Object Recognition

Object recognition uses AI to detect objects in a photo and auto-tag those photos to make finding them easier.

In the image below, objects detected where: Person, Human, Sport, Sports, Ice Skating, Skating, Rink

Ice Skating

Adding images to a system which utilizes object recognition can make finding images significantly easier. And it's effortless. Adding meaningful tags to images, without having to do so manually, is an opportunity to greatly increase the value of an image collection.

When I've added sports images such as the example above to DBGallery I am always easily able to find Ice Skating photos, or Rock Climbing, Skiing, or Snowboarding photos afterwards without any manual tagging. Recognition detects these scenes easily. It significantly adds to the overall value of my image collection. After all, what's the use of a photo collection when photos can't be found. You know you took photos of your company's ice skating outing, but where are they?! Lost? If so, the photo collection's value is just not there. Basic object recognition can make it so very much better!

A couple more examples

Objects detected below: Nature, Outdoors, Water, Building, Countryside, Hut, Rural, Shack, Land, Shoreline

Ocean Wharf

Object detected below: Building; Viaduct; Bridge; Nature; Outdoors; Architecture; Water


How does it work in DBGallery?
You can try it out in a number of ways. In order of simplicity:

1. Drop images onto your extremely simply Object Recognition demo page.

Object Recognition Demo Page

2. Log into cloud.dbgallery.com (Username: DAdmin, PW: dbg), go to any folder there and upload images. Be sure to click the Upload button, highlighted in Red below, and choose the "Automatically recognize objects in the new images" checkbox.


3. Use DBGallery's desktop application. There is a trial version available on our download page.

DBGallery Desktop Screenshot

Going Deeper
The above covers the very basics. If you're interested in going to a little deeper, at the risk of confusing how simple it usually is, read on.

But it's not perfect
In the first sample above, the ice skating rink, it didn't add pick up tags such as Buildings, Skyline, Highrise, Windows, Urban, Winter. Then again those were not the focus of the photo. The above example used Amazon's Rekognition as the object recognition service. Google's Cloud Vision or IBM's Watson, Azure Vision, Clarifai, and other image recognition systems would have all returned some variation on objects that were recognized. The reality is that some manual tagging is still required to get images tagged to a refined level. Object recognition can go anywhere from 'a good start' to 'all I need', depending on the types of objects in your images and important getting tags exactly right is.

DBGallery is working on a feature that allows users to choose which words to ignore, such as never tagging images with "Human", as returned in the above Ice Skating example. Unfortunately there is no means of interacting with object recognition that gives indicators such as "season" or "weather", where the AI would be sure to look for such traits and return the appropriate tags. Maybe sometime in the near future it will.

Custom Models
Custom models can be trained for recognizing the tags you're looking for. This is done by feeding images of specific objects to the recognition system, teaching it what specific object looks like. A common example is feeding the AI with images of various types of clouds. Upload a batch of images, perhaps 10 or 100 (the more the better) of Cumulus clouds, the a batch of Cirrus, Stratocumulus, etc. and it will learn to recognize those cloud types appropriately later as you add various images that have those types of clouds in them. This can work very well when you have images specific to your industry, such as for recognizing certain types of cells, including indicating good and bad ones, in doing cancer or other disease research. Or having it recognizing specialty tools or antique and specialty objects.

Face Recognition
Not yet a part of DBGallery, facial recognition works similar to custom models. You upload one or more images of a given face, indicating the name of that person, and from there on when photos of that person are submitted for recognition, their name will be returned as a tag.

Where from here
Try it out with your own images using our demo object recognition page (option 1 above). Or submit a question using our Contact Us page. Leaving a comment to this blog entry will also surely prompt a fast reply by someone here at DBGallery.